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Abstract The high-density consensus map was con-
structed based on the GY14 £ PI 183967 map from an inter-
subspeciWc cross and the extended S94 £ S06 map from an
intra-subspeciWc cross. The consensus map was composed of
1,369 loci, including 1,152 SSR loci, 192 SRAP loci, 21
SCAR loci and one STS locus as well as three gene loci of
fruit external quality traits in seven chromosomes, and
spanned 700.5 cM, of which 682.7 cM (97.5%) were cov-
ered by SSR markers. The average genetic distance and

physical interval between loci were 0.51 cM and »268 kbp,
respectively. Additionally, the physical position of the
sequence-associated markers aligned along the assembled
cucumber genome sequence established a relationship
between genetic maps and cucumber genome sequence and
to a great extent validated the order of markers in individual
maps and consensus map. This consensus map with a high
marker density and well-ordered markers is a saturated and
reliable linkage map for genetic analysis of cucumber or the
Cucurbitaceae family of plants.

Abbreviations
SSR Simple sequence repeat
SRAP Sequence-related ampliWed polymorphism
SCAR Sequence characterized ampliWed region
STS Sequence tagged site
RIL Recombinant inbred lines

Background

Cucumber (Cucumis sativus L.), which belongs to the fam-
ily Cucurbitaceae, is one of the most important vegetable
plants grown worldwide. Due to having fewer chromosome
numbers (seven chromosomes), hundreds of known func-
tional genes (Xie and Wehner 2001), and a smaller-sized
genome (367 Mb) than other economically important
Cucurbitaceae crops such as melon (480 Mb), watermelon
(430 Mb), squash and pumpkin (539 Mb) (Ren et al. 2009),
cucumber has been a model plant for genetic research of the
Cucurbitaceae crops. Recently, Huang et al. (2009) selected
the ‘Chinese long’ inbred line 9,930 and Wrst reported the
draft genome sequence of cucumber (Cucumber Genome
DataBase http://cucumber.genomics.org.cn/page/cucumber/
index.jsp) with the total length of 243.5 Mb, about 70% of
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the genome size estimated by Arumuganathan (1991)
(367 Mb). Cucumber genome sequence published promotes
the gene map-based cloning of important agronomic traits
in cucumber. For example, Li et al. (2009) used the cucum-
ber genome sequence provided by Huang et al. (2009) to
successfully clone and identify the M/m gene controlling
cucumber Xower sexuality.

Although the cucumber genome sequence has been pub-
lished, it is essential to construct a high-density and repre-
sentative cucumber genetic map for facilitating the use of
the cucumber genome sequence data in map-based gene
isolation. Recently, Ren et al. (2009) published a genetic
map of cucumber including 995 SSR markers spanning
572.9 cM, which was the most saturated linkage map pub-
lished in cucumber or even in the Cucurbitaceae family.
The map contained a great deal of sequence-based molecu-
lar markers and anchored linkage groups on the cucumber
chromosomes by Xuorescence in situ hybridization (FISH)
technology. However, the low population numbers (77
RILs of Gy14 £ PI 183967) would supply insuYcient
genetic recombination information, thus leading to low reli-
ability of position markers mapped on the genetic map. In
fact, this is also one of the reasons that the published
cucumber genome sequence cannot have high ratio cover-
age of the entire genome.

So far, by using all types of markers including morpho-
logic, isozyme, and various DNA molecular markers, over
ten genetic maps have been constructed in cucumber
(Kennard et al. 1994; Serquen et al. 1997; Park et al. 2000;
Bradeen et al. 2001; Fazio et al. 2003; Li et al. 2005; Wang
et al. 2005; Sun et al. 2006;Yuan et al. 2008a, b; Ren et al.
2009), of which two maps other than the Gy14 £ PI
183967 map published by Ren et al. (2009) are relatively
saturated, and they approach the total genomic distance
(750–1,000 cM) estimated by Staub and Meglic (1993).
The map was developed by Fazio et al. (2003) from the 171
individuals of G421 £ H-19, consisted of 131 marker loci
(27AFLPs, 62 RAPDs, 14 SSRs, 24 SCARs, one SNP, and
three MTM) and spaned 706 cM. The other map from 224
RILs of S94 £ S06 (Yuan et al. 2008b) included 257
molecular markers (206 SRAPs, 22 SSRs, 25 SCARs, one
STS and three MTM) and spaned 1,005.8 cM. Many impor-
tant agronomic traits, involving qualitative loci (Yuan et al.
2008b; Zhang et al. 2010) and quantitative trait loci (QTL)
of Xower-related and fruit-related traits (Yuan et al. 2008b)
and lateral branch-related traits (Jiang et al. 2008), were
mapped in S94 £ S06 map. Compared with the Gy14 £ PI
183967 map, most previously published genetic maps were
constructed by using larger mapping groups (>100 individ-
uals) with the various agronomic traits loci. However, these
maps included fewer marker numbers and lower saturation
levels, fewer sequence-based markers, and did not corre-
spond to the linkage groups of the genetic map to the

cucumber chromosomes. Therefore, it was diYcult to com-
pare the genetic maps constructed by diVerent laboratories,
which limits the application of these maps in the molecular
breeding of cucumber.

Map integration is an eVective way to increase the
marker numbers and the saturation of the map. An inte-
grated map synthesizes the information from multiple seg-
regating populations and various marker types of diverse
genetic backgrounds, thus oVering the opportunity to map
larger number of markers than in most single crosses, and
providing greater coverage of the genome that would be
availability for molecular breeding purposes, as well as
allowing comparison of locations of genes of interest across
maps (Truco et al. 2007; Mace et al. 2009). Recently, inte-
grated linkage maps have been constructed in many crop
species involving lettuce (Truco et al. 2007), soybean
(Hwang et al. 2009), cowpea (Muchero et al. 2009) and
Sorghum (Mace et al. 2009) etc. In fact, cucumber map
integration has also been reported (Bradeen et al. 2001), but
the integrated maps are quite unsaturated (<200 loci). With
the development of the cucumber genome sequencing pro-
jects, the ability to construct a high-density and highly rep-
resentative cucumber “reference” genetic map has become
possible.

In this study, we select two cucumber genetic maps of
good quality, the S94 £ S06 map (Yuan et al. 2008b) and
the Gy14 £ PI 183967 map (Ren et al. 2009) to construct a
consensus map. The S94 £ S06 map was constructed from
larger segregating population of 224 recombinant inbred
lines (RILs), while the Gy14 £ PI 183967 map consisted of
a great deal of sequence-based markers despite of a smaller
population (77 RILs). In the study, we extend the previous
S94 £ S06 map using SSR markers developed from the
cucumber genome sequencing project (CGSP) to generate
potential anchor markers for map integration. Two individ-
ual linkage maps, the extended S94 £ S06 map and the
Gy14 £ PI 183967 map, are then used to construct a con-
sensus map, which will provide for a better coverage of all
genomic regions. It is also more representative of C. sativus
var. hardwickii, a feral form of C. sativus var. sativus and
its inclusion allows for more universal utility of markers
across diVerent genetic backgrounds.

Materials and methods

Plant materials

Two mapping populations were used to develop an inte-
grated map of cucumber (Table 1). The Wrst one consisted
of 77 F6–F8 recombinant inbred lines (RILs) derived from
an inter-subspeciWc cross between GY14 and PI183967
(Ren et al. 2009). GY14 is a North American processing
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market type cucumber cultivar and PI183967 is an acces-
sion of C. sativus var. hardwickii originated from India.
Another population derived from an intra-subspeciWc cross
between a Northern China type line S94 and a Northern
European type line S06 (C. sativus var. sativus £ C. sativus
var. sativus) consisted of 224 F7 RILs (Yuan et al. 2008b).
DNA extraction was performed as previously described
(Yuan et al. 2008a).

SSR markers and segregation data

Several sources of markers, including SRAPs, SCARs,
STS, SSRs and MTM, mapped in previous cucumber indi-
vidual maps, were used to prepare the cucumber consensus
map. Markers designated with the preWxes ‘ME_’, ‘PM_’
and ‘e_’ indicate SRAP markers, while a number and
postWx ‘STS’ represent STS marker. ‘S_’, ‘SCZ_’, ‘B_’,

‘F’ and postWx ‘SCAR’ designate SCAR markers. Nomen-
clature and source of SSR markers loci integrated into the
consensus map are listed in Table 2. All primer sequences
for the SRAP markers and primer sequences of SCARs and
STS are available in Supplement material S1 and Supple-
mentary material S2, respectively. The segregation data of
SCARs, SRAPs, SSRs (22 loci), STS and MTM were from
the S94 £ S06 map (SS map) (Yuan et al. 2008b). The seg-
regation data of 995 SSR loci mapped in GY14 £ PI
183967 map (GP map) were obtained from Ren et al.
(2009), and of all primer sequences are listed in Supple-
mentary material S3.

A total of 2,010 SSR markers, including 1,920 markers
from the CGSP (Cucumber Genome-Sequencing Project)
and 90 markers designated with the preWxes ‘CM_’,
‘CMMS_’ and ‘CSJCT_’from previous reports (see
Table 2), were test in the polymorphism analysis using the

Table 1 Summary of two mapping populations used to construct the consensus map of Cucumis sativus L

RIL recombinant inbred lines, SSR simple sequence repeat, SRAP sequence-related ampliWed polymorphism

Mapping 
population

Cross types Population 
type

No.of 
lines

No. of 
markers

Predominant 
markers type

No. of 
SSR markers

References

GY14 £ PI 183967 Inter-subspeciWc cross F8RIL 77 995 SSR 995 Ren et al. (2009)

S94 £ S06 Intra-subspeciWc cross F7RIL 224 257 SRAP 22 Yuan et al. (2008b)

Table 2 SSR markers on the 
integrated consensus map

SSRs code Source of markers No.of loci References

C_ Cucumber genomic library 2 Our laboratory

CM_ Melon ESTs 5 Kong et al. (2007)

CMBR_ Melon genomic library 6 Ritschel et al. (2004)

CMCT_ Melon genomic library 1 Chiba et al. (2003)

CMGA_ Melon genomic library 1 Danin-Poleg et al. (2001)

CMMS_ Melon genomic library 1 Danin-Poleg et al. (2001)

CMTC_ Melon genomic library 3 Danin-Poleg et al. (2001)

CS_ Cucumber ESTs 7 Kong et al. (2007)

CSAT_ Cucumber ESTs 2 Danin-Poleg et al. (2001)

CSTCC_ Cucumber cDNA library 1 Danin-Poleg et al. (2001)

CSEPGN_ Cucumber fruit ESTs 1 Our laboratory

CSFR_ Cucumber fruit ESTs 1 Our laboratory

CSJCT_ Cucumber genomic library 12 Watcharawongpaiboon 
and Chunwongse (2007)

CSWAC_ GeneTrapper kit to select 
plasmids harboring 
microsatellites in cucumber

1 Fazio et al. ((2002)

CSWCT_ GeneTrapper kit 10 Fazio et al. (2002)

CSWGAAT_ GeneTrapper kit 1 Fazio et al. (2002)

CSWGATT_ GeneTrapper kit 2 Fazio et al. (2002)

CSWTA_ GeneTrapper kit 3 Fazio et al. (2002)

CSWTAAA_ GeneTrapper kit 1 Fazio et al. (2002)

SSR_ Cucumber genome 
sequencing project

1,091 Ren et al. (2009)

EST expressed sequence tags
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S94 £ S06 mapping population to generate bridging mark-
ers for the consensus map. The PCR for SSR was carried
out on a 10 �l reaction volume with the following condi-
tions: 94°C for 5 min, followed by 32 cycles at 94°C for
30 s, 50°C for 30 s, and 72°C for 30 s and a Wnal extension
at 72°C for 5 min. The ampliWcation products were sepa-
rated on 6% denatured polyacrylamide gels with 1£ TBE
buVer at a constant power of 50 W for 1.5 h. After electro-
phoresis, the gel was silver-stained (Bassam et al. 1991)
and photographed with a digital camera (Olympus). The
primers were synthesized by Sangon Biological Engineer-
ing Technology & Service Co. (Shanghai).

Construction of the individual linkage map

JoinMap program version 3 was used to analyze the segre-
gation data from each mapping population (Van Ooijen and
Voorrips 2001). The �2 test was used to assess goodness-of-
Wt to the expected 1:1 segregation ratio for each marker.
The stable co-dominant SSR markers were used to con-
struct the framework map in SS map. Markers were
assigned to linkage groups (LGs) by the LOD score in the
range from 3 to 10 for grouping. A maximum LOD score
was selected to group by approaching the number of
cucumber chromosomes. Linkage analysis was carried out
using the following thresholds for JoinMap 3.0: REC
smaller than 0.4, LOD larger than 6.0, RIPPLE of 1 and
JUMP in goodness-of-Wt of 5.0. The recombination per-
centage was converted to genetic distance by the Kosambi
mapping function (Kosambi 1944). The other marker types
including SRAP, SCAR, STS and MTM on previous
cucumber maps (Yuan et al. 2008b) were added to the SSR
framework map using the ‘Fixed Order module’ in Join-
Map. Parameter was the same with that of the framework
map expected for the LOD 3.0. Markers which had been
excluded at higher LOD scores were reevaluated by
decreasing the LOD threshold step by step until it reached
the minimum LOD of 1.0. Markers that did not aVect the
order of the framework map and noticeably increased the
distances of the map were included in the Wnal extended SS
map. The GP map was constructed using the same parame-
ters described by Ren et al. (2009).

Construction of the consensus map

The two individual maps were integrated into a consensus
map using JoinMap program version 3 by bridging mark-
ers. Bridging markers were identiWed as having an identical
name and a similar map position in the diVerent mapping
populations. Markers with the same name that had incon-
sistent positions (>10 cM) in diVerent populations were not
considered as bridging markers and were not used for map
integration in the paper. The position of bridging markers

on each chromosome between the individual maps was
graphically detected by Mapchart 2.2 software (Voorrips
2002). The homologous chromosomes between the individ-
ual maps were integrated by applying the ‘combine groups
for map integration’ module with the following thresholds
for Kosambi mapping function: REC smaller than 0.40,
LOD larger than 3.0, RIPPLE of 1 and JUMP in goodness-
of-Wt of 5.0. The colinearity of an integrated map and the
individual maps was graphically evaluated using Mapchart.

Map validation through the cucumber genome sequence

The draft genome sequence of C. sativus var. sativus L.
covering 243.5 Mbp was used for the map validation. The
sequences of the sequence-associated mapped markers
were aligned along the cucumber assembled genome
sequence to validate their order by the Blastn tool at the
cucumber genome database (CGD) website (http://cucum-
ber.genomics.org.cn/page/cucumber/blast.jsp).

Results

SSR marker analysis

In order to increase saturation of the SS map and to gener-
ate bridging markers for the integrated map, a total of 2,010
SSR primers, including 1,920 markers from the CGSP and
90 markers from the previous reports, were used to screen
the polymorphism from the parents (S94 and S06) of the SS
mapping population. Of 2,010 SSR primers, 1,567 (81.6%)
and 89 (98.9%) were informative and could yield products
in both parents or in only a single parent. Polymorphism
between the parents was observed with 364 (364/
1567 £ 100% = 23.2%) and 17 (17/89 £ 100% = 19.1%)
of primers, respectively. In fact, the 364 SSR primers
ampliWed 366 polymorphic bands. Each SSR primers
(SSR00153 and SSR14392) ampliWed two polymorphic
loci. A total of 383 (383/1657 £ 100% = 23.1%) polymor-
phic marker loci were observed and used for mapping.
Moreover, the polymorphism ratio (23.1%) obtained from
the parents of the SS mapping population (intra-subspeciWc
cross) in the study is approximately one-third of that
(68.1%) from the parents (GY14 and PI 183967) of the GP
mapping population (inter-subspeciWc cross, 1,322 poly-
morphisms among the 1,940 SSR markers used for analy-
sis) according to Ren et al. (2009).

The individual maps

New individual map for the S94 £ S06 population was
constructed by integrating the old and new marker data.
After removing 19 unlinked markers and 11 unsuccessfully
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positioned markers, the extended S94 £ S06 map including
610 markers (384 SSRs, 199 SRAPs, 23 SCARs, one STS
and three morphologic markers) was constructed and con-
sisted of seven linkage groups corresponding to the seven
cucumber chromosomes (Table 3; Supplementary material
S2). Of 384 mapped SSR loci, 346 are from CGSP and 271
of 346 loci are Wrst mapped on the genetic map. The map
covered 749.2 cM at an average marker density of 1.2 cM,
and there was only a large genetic interval with a gap
of >10 cM at the distal end of chromosome 4. The
GY14 £ PI 183967 map contained seven chromosomes
with 995 SSR markers and covered 572.9 cM with the aver-
age marker interval of 0.6 cM (Table 3; Supplementary
material S3). Both populations had some markers with seg-
regation ratios that deviated from Mendelian expectation
(expected 1:1 for RIL population). Distorted markers were
widely distributed through the genome present in all the
chromosomes in SS and GP populations, except for chr. 7
in GP map (Table 4; Supplementary material S2 and S3).

The segregation distorted ratio of each chromosome varied,
and the higher distorted chromosomes were chr. 2, chr. 4
and chr. 6 on SS map, and chr. 1, chr. 4 and chr. 6 on GP
map (Table 4). Most of distorted markers were associated
in groups on the individual maps, indicating that the distor-
tion was due to selection favoring one parental allele rather
than sampling error.

The consensus map

Common SSR markers between homologous chromosomes
were used as bridges to integrate the individual maps into a
single consensus map. A total of 175 markers (all SSR
markers) at two individual maps were in common. Of the
175 markers, 15 (8.6%) were discarded for showing contra-
dictory genetic positions (>10 cM) and 160 bridging mark-
ers were used for map integration (Table 3). The order of
bridging marker between two individual maps was consis-
tent, except for a few marker inversions at the end of chr. 2,

Table 3 Description of the two individual component maps and the integrated consensus map

ave average marker interval, mtm morphological trait marker
a Number of total SSR markers on each chromosome

Chromosome S94 £ S06 extension map GY14 £ PI 183967 map The consensus map

Genome 
coverage 
(cM)

No. of 
loci (SSR)a

Maker 
density 
(cM)

Genome 
coverage 
(cM)

No. of 
loci 
(SSR)

Maker 
density 
(cM)

Bridging 
marker
(SSR)

Genome 
coverage 
(cM)

No. of loci Maker 
density 
(cM)SSR SRAP SCAR STS MTM Total

chr. 1 114.5 83 (50) 1.38 96.2 118 (118) 0.82 19 114.3 137 28 0 1 – 166 0.69

chr. 2 100.8 75 (42) 1.34 100.2 126 (126) 0.80 22 109.4 136 31 2 – – 169 0.65

chr. 3 144.5 132 (82) 1.10 112.7 187 (187) 0.60 35 139.2 223 46 2 – – 271 0.51

chr. 4 98.5 69 (46) 1.43 37.3 114 (114) 0.33 16 76.3 139 21 2 – – 162 0.47

chr. 5 106.1 79 (52) 1.34 59.9 160 (160) 0.37 20 75.9 188 19 5 – 3 215 0.35

chr. 6 106.3 124 (75) 0.86 106.5 203 (203) 0.53 33 108.6 225 38 8 – – 271 0.40

chr. 7 78.5 48 (37) 1.64 60.1 87 (87) 0.69 15 76.8 104 9 2 – – 115 0.67

Total 749.2 610 (384) 1.2 (ave) 572.9 995 (995) 0.58 (ave) 160 700.5 1,152 192 21 1 3 1,369 0.51 (ave)

Table 4 Distribution of distorted markers cross the chromosomes in two mapping populations in the study

SS S94 £ S06, GP GY14 £ PI 183967, S/T S number of distorted markers, T total number of markers on chromosome, G a group of distorted
markers deWned as a group of four or more closely linked distorted markers with gaps of non-distorted markers of three or less, L interval in cM
of the largest distorted group, D direction of the distortion, as towards the S94 allele, bs towards the S06 allele, bg toward the PI183967 allele

INT Chr. 1 2 3 4 5 6 7

SS map S/T 17/83 37/75 17/132 16/69 16/79 60/124 12/48

var.sativus £ var.sativus G 1 2 1 1 – 3 1

28.7% distorted markers L 6.6 26.6 7.1 19.4 – 35.9 8.2

D as bs as as – as as

GP map S/T 42/118 15/126 25/187 68/114 3/160 49/203 0/87

C. sativus var. sativus £ C. sativus var. hardwickii G 1 1 1 1 – 1 –

20.3% distorted markers L 41.4 3.4 13.7 34.4 – 18.3 –

D bg bg bg bg – bg –
123
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chr. 3, chr. 6 and chr. 7. JoinMap 3.0 was used to integrate
two individual maps into a consensus map based on 160
bridging markers in seven chromosomes. The joint segrega-
tion analysis with a total of 1,605 loci and 301 RILs from
the two populations resulted in an integrated map with
1,369 loci, including 1,152 SSR loci, 192 SRAP loci, 21
SCAR loci and one STS locus, as well as three gene loci of
fruit external quality traits (Table 3; Fig. 1). Detailed infor-
mation of all marker loci in consensus map and their fea-
tures, including the genetic distance and physical position
of each locus in chromosomes, source of each marker
locus, marker types, bridging markers and multi-copy
marker, are listed in Supplementary material S4. The con-
sensus map spanned 700.5 cM, of which 682.7 cM (97.5%)
were covered by SSR markers. The length of seven chro-
mosomes ranged from 75.9 cM (chr. 5) to 139.2 cM (chr. 3)
and 94.7% (chr. 5) to 100% (chr. 2 and chr. 4) were covered
by SSR markers. The average genetic distance between loci
was 0.51 cM and ranged from 0.35 cM (chr. 5) to 0.69 cM
(chr. 1). This was an average physical interval of »268 kbp
per marker considering the cucumber genome size to be
approximately 367 Mbp (Arumuganathan and Earle 1991).
There was no large gap (>10 cM) detected on the integrated
map (Fig. 1). Most marker loci were relatively evenly dis-
tributed along the chromosomes on the integrated map
except for four marker cluster regions detected on chromo-
somes 4, 5 and 7 (Figs. 1, 2). Markers of three chromosome
regions showed a tendency to cluster around centromeres,
and markers of one chromosome region clustered on a dis-
tal end region of chromosome 4. The clustering markers
mainly originated from that of the GP map.

Alignment of the maps

Compared to the individual maps, the marker order of the
integrated map was generally consistent between homolo-
gous chromosomes. Well-ordered collinear markers were
found on chromosomes 1, 2, 3 and 6 (Fig. 2a). There are a
few markers inconsistent and the inconsistency was usu-
ally within a small interval (<5 cM on the integrated
map). Large diVerences between the integrated map and
the individual maps were detected on the marker cluster
regions of chromosomes 4, 5 and 7 (Fig. 2a). Two SSR
markers (SSR23549 and SSR22231) from the top end on
chr. 4 and a 20 cM length fragment on the top end of chr.
5 on S94 £ S06 map were separately integrated into the
marker cluster regions on the corresponding chromo-
somes of the integrated map, making the marker order in
these regions quite diVerent between the integrated map
and the individual maps. This may be due to wrong loca-
tion with a weak linkage (>10 cM) or chromosome struc-
ture diVerences among parents of diVerent mapping
populations.

Map validation

The sequences of the sequence-associated markers, includ-
ing 316 markers (206 SSRs, nine SCARs and one STS) in
SS map, 892 SSRs in GP map and 995 markers (985 SSRs,
SCARs and one STS) in consensus map, were used to align
along the assembled cucumber genome sequence to vali-
date their order by using the Blastn tool at CGD, respec-
tively. The result showed that 80% of the sequence-
associated markers in consensus map were ordered along
the chromosomes of the assembled cucumber genome
sequence, except for some markers mapped in smaller
regions (<5 cM) at the top end of chromosomes 2, 3 and 6
and larger chromosome regions (>20 cM) at the top end of
chromosomes. 4, 5 and 7 (Fig. 2b; Supplementary material
S4). DiVerences of markers order existed in individual
maps explain that of the consensus map (Fig. 2b; Supple-
mentary materials S2, S3). In addition, the consensus map
spanned 700.5 cM in this study and covered 70–93.4% of
the cucumber genome according to the estimated size of the
entire cucumber genome of 750–1,000 cM (Staub and
Meglic 1993). This observation was in good agreement
with the physical covering size based upon these sequence-
associated markers, which covered about 172.5 Mbp
(70.8%) out of 243.5 Mbp of the assembled genome
sequence (Huang et al. 2009). The sequences of the
sequence-associated markers were listed in Supplementary
material S5.

Discussion

Map integration is an eVective way to increase marker
numbers and map saturation. Recently, abundant sequence-
associated markers (SSRs) have been developed from the
cucumber genome-sequencing project, which provides the
opportunity for integrating cucumber genetic maps con-
structed by diVerent laboratories. In the study, we extended
the previous S94 £ S06 map (Yuan et al. 2008b) using SSR
markers developed from the CGSP to generate potential
anchor markers for map integration. Two individual linkage
maps, the extended S94 £ S06 map and the Gy14 £ PI
183967 map, were integrated into a consensus map. The
stable and saturated map serves as a reference map for
cucumber genetic analysis involving map-based gene isola-
tion, quantitative trait loci (QTL) Wne analysis, construction
of physical maps and marker assisted selection (MAS),
even for comparative analysis in other cucurbit genomes.

The individual map

Previously, a genetic map consisting of 257 markers was
developed by a RIL population (224 individual lines) from
123
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Fig. 1 The consensus map of cucumber from the two independent
genetic maps. Ruler on the right side shows the distance in centiMorgan
from the top of each chromosome. Detailed information of each marker
loci in chromosome, including the genetic and physical position of

each locus in chromosomes, source of each marker locus, marker
types, bridging markers and multi-copy marker are available in Sup-
plementary material S4
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a cross of S94 £ S06 (Yuan et al. 2008b). In the present
study, using the same RIL population, a S94 £ S06 map
were extended by increasing the number of SSR markers
from CGSP. The extended map contained 610 marker loci
(384 SSRs, 199 SRAPs, 23 SCARs, one STS and three mor-
phological traits) and covered 749.2 cM with an average
marker interval of 1.2 cM (Table 3; Supplementary material
S2). As compared to the original S94 £ S06 map, the new
map contained more DNA markers (607). In particular, the
sequence-speciWc markers (SSR and SCAR) increased from
the original 48 to 408, and the number of gaps (>10 cM)
decreased from the original 27 to only one gap, making the
new S94 £ S06 map constructed in the study the most satu-
rated linkage map among the published genetic maps from
intra-subspeciWc crosses (narrow cross type) to date.

The segregation distortion ratio of each chromosome
varied widely, and the most segregation distortion regions
(SDRs) diVered in each individual map, indicating that seg-
regation distortion can occur anywhere in the cucumber
genome (Supplementary material S2, S3). All marker loci
within these SDRs in SS map were associated with
C. sativus var. sativus parent S94 except for markers on
chr. 2 with C. sativus var. sativus parent S06, while all
markers loci in GP map were associated with C. sativus
var. hardwickii parent PI 183967 (Table 4). C. sativus var.
sativus parent S94 shows most phenotypic characteristics
of wild cucumber and C. sativus var. hardwickii parent
PI183967 is a wild form of cucumber, indicating that the
wild alleles confer stronger viability than the domesticated
ones.

Fig. 2 a Collinear analysis of the consensus map and two individual
maps for seven cucumber chromosomes. GP GY14 £ PI 183967 map,
IN integrated consensus map, SS S94 £ S06 map, Line indicates the
same markers between the integrated consensus map and GY14 £ PI
183967 map or S94 £ S06 map. Black region on chr. 4, chr. 5 and chr.
7 of the consensus map indicates the markers cluster regions. b Genetic

versus physical mapping of marker on the 7 cucumber chromosomes
of the two individual maps and the consensus map. Purple triangle,
blue circle and red box on the vertical and horizontal axis indicates the
genetic mapping of markers (cM) and the physical position of markers
(Mb) on the GP map, SS map and INT map, respectively (color Wgure
online)
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The consensus map

In the study, bridging markers between homologous chro-
mosomes were used to integrate the individual maps (the
extended SS map and the GP map) into a single consensus
map by using Joinmap3.0 software. The consensus map
contained 1,369 loci, including 1,152 SSR loci, 192 SRAP
loci, 21 SCAR loci and one STS locus as well as three gene
loci of fruit external quality traits, covered densely all
seven cucumber chromosomes and spanned 700.5 cM at
the average marker density of 0.51 cM. The consensus map
with high marker density is the most saturated genetic map
in cucumber or even in the Cucurbitaceae family to date.
Moreover, it is also more representative of C. sativus var.
hardwickii, a feral form of C. sativus var. sativus and its
inclusion allows for more universal utility of markers
across diVerent genetic backgrounds.

One of the challenges of map integration was to deal
with multi-loci markers. Even for the same primers, alleles
mapped in one population could be the same or diVerent
from those mapped in other populations since multiple alle-
les or loci can be detected and mapped from some SSR
markers (Gustafson Perry et al. 2009). In the study, two
SSR markers SSR00153 and SSR14392 behaved as multi-loci
markers in SS extension map and each primer ampliWed
two polymorphic loci. For SSR00153, two polymorphic
loci mapped to chr. 1 and chr. 4, while two SSR14392 loci
both mapped to chr. 4 at the interval of more than 20 cM
(Supplementary material S4). Furthermore, visual observa-
tion of the common SSR markers between the SS extended
map and the GP map by Mapchart software found that the
polymorphic loci were ampliWed by four same SSR primers
located on the diVerent chromosomes in diVerent mapping
populations, for example, SSR05830 on chr. 1, SSR20859
on chr. 5, as well as SSR04530 and SSR04245 on chr. 6 in
SS extended map were mapped on chr. 3, chr. 6, as well as
chr. 3 and chr. 5 in GP map, respectively (Supplementary
material S4). The Wve SSR markers may be potential
multi-loci markers, or may be mapped inaccurately by
small mapping populations and missing or poor quality
data. Due to the existence of multi-loci markers, common
markers showing inconsistent genetic mapping (>10 cM)
and signiWcant heterogeneity (i.e., potentially diVerent loci)
between two mapping populations were eliminated to
ensure the accuracy of the consensus map. Of 175 common
markers between the two individual maps in the study, 15
(8.6%) were discarded.

The consensus map constructed in the study is a more
informative genetic resource. It consists of 1,369 loci and
spans 700.5 cM with the average interval of 0.51 cM
(Fig. 1). The consensus map has a higher marker density
and smaller average marker interval than the SS map
(749.2 cM, 1.2 cM) and GP map (572.9 cM, 0.6 cM).

However, the total length of the consensus map is 48.7 cM
shorter than that of SS map, and 127.6 cM larger than that
of GP map (Table 3). This mainly is the reason that there
were four marker clustering regions detected on chr. 4 (two
cluster regions), chr. 5 (one cluster region), and chr. 7 (one
cluster region) of the GP map (Fig. 2a), and the genetic
intervals among markers in GP map were enlarged on the
consensus map, similar to results obtained after the integra-
tion of markers in a reported by Gustafson Perry et al.
(2009). Compared to the SS map (749.2 cM), the total
length of the consensus map (700.5 cM) was shortened,
while actual genome coverage was increased. An extra
9 cM at the top end of chr. 2 and 10 cM at the bottom of
chr. 5 in consensus map lacked in SS map, and 4–6 cM at
the top end of chr. 1 and chr. 7 as well as 12–13 cM at the
top end of chr. 4 and chr. 5 lacked in GP map, indicating
that the consensus map had larger coverage of the whole
cucumber genome than the two individual maps. Further-
more, analysis of physical position of the sequence-associ-
ated markers showed that the consensus covered about
172.5 Mbp (70.8%) out of the 243.5 Mbp of assembled
genome sequence (Huang et al. 2009). Some regions in
consensus map, such as the top end of chr. 5 and chr. 6,
contained many SRAP markers which had no information
of the corresponding sequence (Supplementary material
S4), thus the genome coverage of the consensus map was
underestimated.

Recombination suppression caused by chromosomal
rearrangement may be the cause of the marker clustering
(Rieseberg and Livingstone 2003). In the study, these
recombination suppression regions were detected by com-
mon markers between the GP map and SS map (Supple-
mentary material S2, S3). For example, the cluster on chr. 5
of the GP map spanned 1.9 cM, but it increased dramati-
cally to 60.0 cM on the SS map. A chromosome inversion
between GY14 and PI 183967 by FISH analysis with SSR
markers from one cluster region on the top end of chr. 5
was observed (Ren et al. 2009). Therefore, The chromo-
somal structure rearrangement between chromosomes of
GY14 and PI 183967 resulted in suppression of meiotic
recombination of chr. 5. Physical position of the sequence-
asssociated markers on chr. 5 in GP map showed that mark-
ers in recombination suppression region randomly arranged
at the cucumber genomic sequence (Fig. 2b: chr. 5, Supple-
mentary material S3), while the same result on the top end
of chr. 5 in SS map was observed. Physical positions of all
markers were varied from 0–20Mbp on chr. 5 in individuals
map and the consensus map (Fig. 2b: chr. 5, Supplementary
material S2). The SS map was from the intra-subspeciWc
cross and both parents belong to C. sativus var. sativus, so
physical positions of the sequence-associated should theo-
retically align better along the cucumber genomic sequence
from C. sativus var. sativus inbred line 9,930. However,
123



258 Theor Appl Genet (2012) 124:249–259
random arrangement at 50 cM intervals was observed, indi-
cating that diVerent cucumber parents may have the chro-
mosomal structure diVerences on chr. 5. Similarly, the two
clusters on chr. 4 of the GP map had covered almost two-
thirds of the total length of chr. 4 of the SS map (Fig. 2b:
chr. 4, Supplementary material S2, S3), which may be
explained by chromosomal structure rearrangement. The
diVerences in locus order on the genetic map caused by
chromosomal rearrangement have been reported in some
plants (Hayashi et al. 2001; Isobe et al. 2009). These
regions of recombination suppression are useful for study-
ing cucumber evolution during domestication. The marker
cluster of chr. 7 in GP map may be caused by less recombi-
nation events around centromeres (Huang et al. 2009). Ran-
dom arrangement markers were varied under 0–8 Mbp on
chr. 7 in individual maps and the consensus map (Fig. 2b:
chr. 7, Supplementary material S2). In addition, putative
errors of the assembly of the 9,930 genomic sequences
would also account for disagreement between genetic and
physical linkages observed in the study. Well-ordered collin-
ear markers were detected on chromosomes 1, 2, 3 and 6 of
the consensus map (Fig. 2), where the order of only a few
markers were inconsistent within a small interval (<5 cM on
the integrated map), indicating that sequence structure on
most chromosomes are highly conserved in cucumber. Local
inconsistencies in marker order may be partially attributed to
a sampling bias mainly in the small mapping population
(GY14 £ PI 183967, 77 RIL individuals). Well ordered
markers were highlighted in consensus map (Supplementary
material S4) and regions of likely structural rearrangement
were identiWed and served as a resource to map in additional
population of better genetic resolution.

Accessibility of the consensus map

Previous research showed that if the genetic map was con-
structed for the purpose of map-based gene cloning in
cucumber, the average interval between the markers would
be less than 1 cM. Actually, the average marker interval on
all seven chromosomes of the consensus map was less than
0.7 cM (Table 3). Therefore, this consensus map should be
used for map-cloning genes of key agronomic traits in
cucumber. In the study, three valuable external quality
traits related to the market values of cucumber, tuberculate
fruit (Tu), dull skin (D) and uniform immature fruit color
(u), were mapped between SCZ69 (2.5 cM) and SSR04142
(4.4 cM) on chr. 5 of the S94 £ S06 extended map (Supple-
mentary material S2). Two new SSR markers in consensus
map, SSR19172 and SSR00772, narrowed the Xanking
markers interval to 0.2 cM and 0.9 cM, respectively (Fig. 1;
Supplementary material S4). Obviously, the saturated and
high-density consensus map will further promote identiWca-
tion and map-based cloning of the three quality trait genes.

The consensus map contains 1,369 loci, of which 1,174
(86%) are special markers that can be ampliWed by low cost
and non-labor intensive assays. Thus, these markers will
greatly enhance the eYciency of cucumber breeding pro-
grams via marker-assisted selection (MAS). Furthermore,
the physical location of the 995 sequence-associated mark-
ers on the assembled cucumber genome sequence estab-
lished the relationship between the genetic map and the
whole genome sequence of cucumber, which greatly vali-
dated the order of the markers on the consensus map and
will provide valuable information for genomic, structural
and evolutionary studies in cucumber and other species of
Cucurbitaceae.
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